二面角定义(二面角定义图解加文字)

2024-04-02 08:32:33次浏览条评论

本文目录一览:

  • 1、二面角的定义
  • 2、二面角定义
  • 3、二面角的定义和范围
  • 4、什么是二面角?

二面角的定义

二面角定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

关于二面角的性质为:

1、同一二面角的任意两个平面角相等,较大二面角的平面角较大。

2、两个二面角的和或差所对应的平面角,是原来两个二面角所对应的平面角的和或差。

3、二面角可以平分,且平分面是唯一的。

4、对棱二面角相等。

作二面角的平面角的常用方法有以下几种:

1、定义法 :在棱上取一点A,然后在两个平面内分别作过棱上A点的垂线。有时也可以在两个平面内分别作棱的垂线,再过其中的一个垂足作另一条垂线的平行线。

2、垂面法 :作与棱垂直的平面,则垂面与二面角两个面的交线所成的角就是二面角的平面角

3、面积射影定理:二面角的余弦值等于某一个半平面在另一个半平面的射影的面积和该平面自己本身的面积的比值。即公式cosθ=S'/S(S'为射影面积,S为斜面面积)。运用这一方法的关键是从中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得。

二面角定义

两平面相交,在两平面分别作过交线上同一点且垂直于交线的直线,所作的两条直线的夹角,即为这两个平面的二面角。

二面角的定义和范围

从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。[1]

中文名

二面角

外文名

dihedral angle

度量工具

平面角

范围取值

0°≤θ≤180°

应用

空间几何

快速

导航

简述

性质

平面角做法

求解方法

相关概念

1.半平面:平面的一条直线把平面分成两部分,其中每一部分都叫做一个半平面。

2.平面角:以二面角的公共直线上任意一点为端点,在两个面内分别作垂直于公共直线的两条射线,这两条射线所成的角叫做二面角的平面角。二面角的大小可用平面角表示。

3.直二面角:平面角是直角的二面角叫做直二面角。互相垂直的平面:相交成直角的两个平面叫做互相垂直的平面。[2]

简述

平面内的一条直线,把这个平面分为两部分,每一部分都叫作半平面。从一条直线出发的两个半平面所组成的图形叫作二面角。这条直线叫作二面角的棱,这两个半平面叫作二面角的面。二面角的大小,可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度。[3] 二面角也可以看作是从一条直线出发的一个半平面绕着这条直线旋转,它的最初位置和最终位置组成的图形。

二面角的平面角的大小,与其顶点在棱上的位置无关。如果两个二面角能够完全重合,则说它们是相等的.如果两个二面角的平面角相等,那么这两个二面角相等。反之,相等二面角的平面角相等。

什么是二面角?

二面角的定义:

  平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角(这条直线叫做二面角的棱,每个半平面叫做二面角的面)。

二面角的大小可以用它的平面角度来度量,二面角的平面角是多少度,就说这个二面角是多少度。平面角是直角的二面角叫做直二面角。

作二面角的平面角的常用方法有六种:

1、定义法 :在棱上取一点A,然后在两个平面内分别作过棱上A点的垂线。有时也可以在两个平面内分别作棱的垂线,再过其中的一个垂足作另一条垂线的平行线。

2、垂面法 :作与棱垂直的平面,则垂面与二面角两个面的交线所成的角就是二面角的平面角

3、面积射影定理:二面角的余弦值等于某一个半平面在另一个半平面的射影的面积和该平面自己本身的面积的比值。即公式cosθ=S'/S(S'为射影面积,S为斜面面积)。运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得。

4、三垂线定理及其逆定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。

5、向量法:分别作出两个半平面的法向量,由向量夹角公式求得。二面角就是该夹角或其补角。

6、转化法:在二面角α-l-β其中一个半平面α上找一点P,求出P到β的距离h和P到l的距离d,那么arcsin(h/d)(二面角为锐角)或π-arcsin(h/d)(二面角为钝角)就是二面角的大小。

仙福永享寿与天齐(仙福永享寿与天齐贬义) 新居入伙祝福语(广东新居入伙祝福语)
相关内容