根号5是无理数吗(求证:根号5是无理数)
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 根号5是无理数吗 根号5是无理数。常见的无理数有非完全平方数的平方根、π和e(其中后两...,以下是对"根号5是无理数吗"的详细解答!
文章目录
- 1、根号5是无理数吗
- 2、求证:根号5是无理数
- 3、根号5是无理数吗求解!!哭求学霸
根号5是无理数吗
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
根号5是无理数吗
根号5是无理数。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等,无理数的特征是无限的连分数表达式,无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
证明过程
1.设根号下5不是无理数而是有理数,则设根号下5=p/q(p,q是正整数,且互为质数,即最大公约数是1)。
2.两边平方,5=p^2/q^2, p^2=5q^2(*)。
3.p^2含有因数5,设p=5m,代入(*),25m^2=5q^2, q^2=5m^2,q^2含有因数5,即q有因数5。
4.这样p,q有公因数5,这与假设p,q最大公约数为1矛盾。
5.根号下5=p/q(p,q是正整数,且互为质数,即最大公约数是1)不成立,
所以,根号下5不是有理数而是无理数。
求证:根号5是无理数
证明:可以用‘反证法’来证明:
假设√5是有理数,那么它一定可以用一个最简的既约分数a/b表示,
√5=a/b
两边同时平方,得
5=a^2/b^2
得:a^2=5b^2,
由此可见,a是5的倍数,于是设a=5k,则有
(5k)^2=5b^2
25k^2=5b^2
得:b^2=5k^2,
也就是说b也是5的倍数,
综上,a、b都是5的倍数,那么a/b就不是最简分数了,与假设矛盾,
因此,根号5不是有理数,必定是无理数。
根号5是无理数吗求解!!哭求学霸
通俗地说,无理数是不能化为分数的数,
严格地说,无理数就是不能写成两个整数比的数。
用反证法证明√5是无理数。
设√5不是无理数而是有理数,则设√5=p/q(p,q是正整数,且互为质数,即最大公约数是1)
两边平方,5=p^2/q^2, p^2=5q^2(*)
p^2含有因数5,设p=5m
代入(*),25m^2=5q^2, q^2=5m^2
q^2含有因数5,即q有因数5
这样p,q有公因数5,
这与假设p,q最大公约数为1矛盾,
√5=p/q(p,q是正整数,且互为质数,即最大公约数是1)不成立,
√5不是有理数而是无理数。