导数和微分的区别(导数和微分的区别通俗易懂)

2024-04-03 09:23:31次浏览条评论

本文目录一览:

  • 1、导数和微分的区别
  • 2、微分和求导有什么差别?
  • 3、微分和导数的区别通俗
  • 4、导数和微分的区别?
  • 5、导数和微分的区别是什么呢
  • 6、微分和求导有什么区别

导数和微分的区别

楼上的,问题是导数和微分的区别,你怎么说到微分和积分的区别了。

对于一元函数y=f(x)而言,导数和微分没什么差别。导数的几何意义是曲线y=f(x)的瞬时变化率,即切线斜率。微分是指函数因变量的增量和自变量增量的比值△y=△f(x+△x)-f(x),这里可以把自变量x看成是关于自身的函数y=x,那么△x=△y,所以微分另一种说法叫微商,dy/dx是两个变量的比值。一般来说,dy/dx=y'。

对于多元函数,如二元函数z=f(x,y)而言,导数变成了关于某个变量的偏导数。此时,微分符号dz/dx是个整体,不能拆开理解。而且,有个重要区别,可导不一定可微。即可导是可微的必要非充分条件。但是,有定理,若偏导数连续则函数可微。具体看全微分与偏导数有关章节。

THE END。

微分和求导有什么差别?

导数和微分的区别一个是比值、一个是增量。

1、导数是函数图像在某一点处的斜率,也就是纵坐标增量(Δy)和横坐标增量(Δx)在Δx--0时的比值。

2、微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。

扩展资料:

设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的。

且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。

记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。

微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。

推导

设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。

AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出: 当△x→0时,△y≈dy。

导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。 [4]

几何意义

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

参考资料来源:百度百科-微分

微分和导数的区别通俗

微分就是字面意思,可以理解成极限,假设有一个点x,在无限靠近x的地方取的点就是dx。

导数反映了因变量随自变量变化而变化的快慢程度,即变化率,举个例子,速度是路程对时间的导数,v=ds/dt,如果导数是一个常数,说明原函数是一次函数,如果导数是一个函数表达式,说明原函数是一条曲线,取任意两点求导,导数可能不一样

导数和微分的区别?

导数是函数图像在某一点处的斜率,也就是纵坐标增量(Δy)和横坐标增量(Δx)在Δx--0时的比值。微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。

导数是函数图像在某一点处的斜率,也就是纵坐标变化率和横坐标变化率的比值。微分是指函数图像在某一点处的切线在横坐标取得Δx以后,纵坐标取得的增量。

扩展资料

微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。

定义:

设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。

如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。

函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

参考资料

百度百科-微分

导数和微分的区别是什么呢

导数是变化率,即函数值的变化速度,微分则是变化量,即由于函数的自变量的增量产生函数值的增量,可以打个比方,一个物体在运动(速度可能不断地变化),运动的路程就是函数s(t),如果在它的运动路径上取一个观察点,则物体经过观察点时的速度v(t)就是函数s(t)的导数s'(t),以物体经过观察点的时刻t为起点,取一段时间间隔Δt,则物体经过观察点时的速度v(t)与这一段时间间隔Δt的乘积v(t)Δt,也就是物体在这一段时间间隔Δt内运动的路程v(t)Δt就是函数s(t)在t时刻的微分ds,即ds

=

v(t)Δt,或ds

=

v(t)dt。

微分和求导有什么区别

1、本质不同

求导:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。

微分:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。

2、比值增量的不同

导数:函数图像在某一点处的斜率,也就是纵坐标增量(Δy)和横坐标增量(Δx)在Δx--0时的比值。

微分:函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。

微积分,数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。

扩展资料:

微分在日常生活中的应用,就是求出非线性变化中某一时间点特定指标的变化。

例如,水箱中充满了水,水箱里水的体积V(升)和时间t(秒)的关系为V=5-2/(t+1),

当t=3时,想知道此时的加水率,所以在t=3后计算dV/dt=2/(t+1)^2,代入t=3后得出dV/dt=1/8。

因此,可以得出结论,水箱中的水量在充水3秒开始时以每秒1/8升的速度增加。

参考资料来源:百度百科-求导

参考资料来源:百度百科-微分

参考资料来源:百度百科-微积分

骨灰盒标准尺寸(骨灰盒标准尺寸图片) 狮子是什么之王(狮子是什么之王,老虎是百兽之王)
相关内容