绝对值不等式6个基本公式(绝对值不等式归纳总结有哪些)
绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。绝对值不等式的公式为:||a|-|b||≤|a±b|≤|a|+|b|。 ...,以下是对"绝对值不等式6个基本公式"的详细解答!
文章目录
- 1、绝对值不等式6个基本公式是什么
- 2、绝对值不等式归纳总结有哪些
- 3、绝对值不等式公式有哪些 该如何解
- 4、不等式公式
绝对值不等式6个基本公式是什么
绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。绝对值不等式的公式为:||a|-|b||≤|a±b|≤|a|+|b|。
|a|表示数轴上的点a与原点的距离叫做数a的绝对值。
|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。
当a,b同号时它们位于原点的同一边,此时a与﹣b的距离等于它们到原点的距离之和。
当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。(|a-b|表示a-b与原点的距离,也表示a与b之间的距离)。
绝对值不等式归纳总结有哪些
1、公式:|a|-|b|≤|a+b|≤|a|+|b|。性质:|a|表示数轴上的点a与原点的距离叫做数a的绝对值。两个重要性质:1.|ab|=|a||b|;|a/b|=|a|/|b|。
2、|a|<|b|可逆a2。另外|a|-|b|≤|a+b|≤|a|+|b|,当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立。|a|-|b|≤|a-b|≤|a|+|b|,当且仅当ab≥0时左边等号成立,ab≤0时右边等号成立。
3、几何意义
1)当a,b同号时它们位于原点的同一边,此时a与﹣b的距离等于它们到原点的距离之和。
2)当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。(|a+b|表示a-b与原点的距离,也表示a与b之间的距离)4、绝对值重要不等式。我们知道|a|={a,(a>0),a,(a=0),﹣a,(a<0 a|≤a≤|a|﹣|b|≤b≤|b|,同样地①,②相加得﹣﹙|a|+|b|)≤a+b≤|a|+|b|,即|a+b|≤|a|+|b|。显而易见,a,b同号或有一个为0时,③式等号成立。由③可得|a|=|(a+b)-b|≤|a+b|+|-b|,即|a|-|b|≤|a+b|。>
综合③,④我们得到有关绝对值(absolutevalue)的重要不等式a|-|b|≤|a+b|≤|a|+|b|。
简单的绝对值不等式的解法:
不等式中高考的一个重点,解绝对值不等式的关键是去掉绝对值符号转化为普通不等式,常用方法有等价转化法、零点讨论法,个别时候可用平方去掉绝对值符号。
绝对值不等式公式有哪些 该如何解
绝对值不等式是数学中一个重要的知识点,同时也是考试中时常出现的考点。下面是由我为大家整理的“绝对值不等式公式有哪些 该如何解”,仅供参考,欢迎大家阅读本文。
绝对值不等式公式
||a|−|b||≤|a±b|≤|a|+|b|;
|ab|=|a||b|,|a/b|=|a|/|b|(b≠0);
|a|<|b| 可推出|b|>|a|;
3、∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立;
4、|a−b|≤|a|+|−b|=|a|+|−1|∗|b|=|a|+|b|
怎样解绝对值不等式
解绝对值不等式的基本方法是去掉绝对值符号
1、平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了;
2、讨论,即x≥0时,|x|=x;x<0 x|=-x,绝对值符号也没有了,令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。>
不等式公式
不等式公式如下:
一、基本不等式
√(ab)≤(a+b)/2,那么可以变为 a^2-2ab+b^2 ≥ 0,a^2+b^2 ≥ 2ab,ab≤a与b的平均数的平方。
二、绝对值不等式公式
| |a|-|b| |≤|a-b|≤|a|+|b|。
| |a|-|b| |≤|a+b|≤|a|+|b|。
三、柯西不等式
设a1,a2,an,b1,b2,bn均是实数,则有(a1b1+a2b2++anbn)^2≤(a1^2+a2^2+an^2)*(b1^2+b2^2+bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,n)时取等号。
四、三角不等式
对于任意两个向量b其加强的不等式,这个不等式也可称为向量的三角不等式。
五、四边形不等式
如果对于任意的a1≤a2